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Nonclassical interference of photons lies at the heart of optical quantum information processing. Here,
we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference.
We investigate this in theory and experiment by controlling the delay times of three photons injected into an
integrated interferometric network. We derive the entire coincidence landscape and identify transition
matrix immanants as ideally suited functions to describe the generalized case of input photons with
arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples
the input state from the interferometric network, thereby providing a useful tool for even larger photon
numbers.

DOI: 10.1103/PhysRevX.5.041015 Subject Areas: Optics, Quantum Physics,
Quantum Information

I. INTRODUCTION

The recent development of quantumphotonics technology
[1] allows experiments using a growing number of photons
and large, complex interferometric networks. Manipulating
such large Hilbert spaces requires well-adapted tools in both
theory and experiment. Although nonclassical interference is
often associated with perfectly indistinguishable photons,
this represents only the simplest case of photon states
fully symmetric under permutation. Experimentally, partial
distinguishability is ubiquitous, because the generation
of indistinguishable multiphoton states currently remains a
challenge. Moreover, partial distinguishability is of funda-
mental interest, as highlighted, for instance, by the non-
monotonicity of the quantum-to-classical transition [2,3].
The objective of this paper is to show how controllable

delays in multimode coincidence experiments are related to
the interference of photons of controllable partial distin-
guishability. This is done by presenting a novel description
for the nonclassical interference of multiple photons of
arbitrary distinguishability propagating through arbitrary

interferometers. We introduce a symmetry-adapted and
therefore natural basis that plays the role of normal coor-
dinates for the description of the nonclassical interference of
photons. In our framework, a different interferometer just
depends on a different set of normal coordinates; the degree
of nonclassical interference is determined solely by the
properties of the photons. Distinguishability, as the central
property, is tunable by treating temporal delay as an explicit
parameter, thereby allowing access to the whole spectrum
of nonclassical interference. In this perspective, our results
differ from Tichy [4] and Shchesnovich [5]; these authors
also discuss partial distinguishability but in formalisms
where time delays, which are our controllable parameters,
are not immediately explicit. The work of Tamma and
Laibacher [6] also tackles partial distinguishability in a
perspective different from ours.
Here, we treat the nonclassical interference of n ¼ 3

photons injected into different input ports of a linear-optical
quantum network and investigate the probability to detect
them as an n-fold coincidence for the case that the photons
leave the interferometer in different output ports. Our
approach can be generalized to a higher number of photons
n; however, the case for n ¼ 3 allows an intuitive visuali-
zation through a three-dimensional coincidence landscape,
where two axes span the distinguishability space for the three
photons whereas the third axis quantifies the output prob-
ability for a coincident detection event. The features of such
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coincidence landscapes are usually understood as the result
of nonclassical interference. We formalize this intuition
by associating landscape features with immanants, which
are polynomial functions in the elements of the scattering
submatrix, havingdefinite symmetries under permutations of
rows or columns of this submatrix. The permanent and the
determinant are special cases of immanants corresponding
to fully symmetric or fully antisymmetric functions under
permutations of the rows or columns of the scattering
submatrix, respectively. More general immanants have
mixed permutation symmetries and are related to partial
distinguishability of the input photons as in Ref. [7].
Figure 1 shows how the analysis can break the rates of

the landscape in terms of contributions from immanants of
the submatrix describing the scattering from the input to the
output channels. In Fig. 1(b), the landscape is cut along two
characteristic directions where landscape features are to
be found: the diagonal and antidiagonal line of pairwise
temporal delay. The six points sampled in our experiments,
indicated by the pins in Figs. 3(b) and 3(e), are chosen
because they are located on such landscape features. Details
of the setup and data are provided in Sec. V. Although the
results for a finite number of pairs of delays are presented in
Fig. 3, it is clear from the experimental setup that any part
of the landscape can, in principle, be reached by suitably
controlling the time delays.
Our work is motivated in part by the resurgence of

interest in interference of perfectly indistinguishable pho-
tons within the paradigm of BosonSampling. Within this
formalism coincidence rates for such indistinguishable

photons are related to the modulus square of the permanent
of a submatrix of the scattering matrix. Permanents are
known to be hard to compute (in the computational
complexity sense), and Aaronson and Arkhipov [8] have
shown that the distribution of permanents occurring when
m identical photons are made to interfere in an n-channel
network (n ≫ m) is also hard to compute. Some immanants
are known [9] to be in the same complexity class as
permanents, so partial distinguishability could be appli-
cable to some hypothetical generalized BosonSampling of
partially distinguishable photons if the distributions of
immanants could also be shown to be hard to simulate
with a classical computer.

II. REVIEW OF THE QUANTUM INTERFERENCE
OF TWO BOSONS

In the seminal experiment by Hong, Ou, and Mandel
[10], two photons are injected into distinct input ports of a
beam splitter, which is effectively an m ¼ 2 interferometer,
where m is the number of modes of the interferometer. One
element of the output probability distribution correspond-
ing to the case where the two photons exit the beam splitter
in different output ports is recorded via a coincidence
measurement. In the following, we assume the detectors
to be ideal (for further details, see Appendix A 3(a),
Eq. (A24)). In Fig. 2 we show how the coincidence
probability Pc depends on the transformation matrix B,
here defined by the splitting ratio of the beam splitter, and
the distinguishability of the photons. In the prominent

FIG. 1. The coincidence landscape and its substructure. (a) Coincidence landscape which is the visual representation of the
nonclassical interference of three photons of tunable distinguishability. (b) Cut along the diagonal and antidiagonal lines of pairwise
delays Δτ1 ¼ Δτ2 and Δτ1 ¼ −Δτ2, also indicated as a purple trajectory in (a). The height of the landscape corresponds to the
coincidence output probability of a three-photon scattering event. The substructure, expressed in terms of contributions from the
permanent “per”, the determinant “det”, and immanants “imm”, reveals the nature of the scattering event. Beside the plateaux (color
coded in red), which can be explained classically, the whole landscape is governed by a genuine quantum interference of the photons.
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example of a balanced, i.e., 50=50, beam splitter and
perfectly indistinguishable photons, i.e., also zero temporal
delay, the coincidence rate vanishes. The established
technique to calibrate for the point of maximal nonclassical
interference relies on tuning the relative temporal delay Δτ
and therefore the distinguishability between the two pho-
tons. This is described by an overlap integral that accounts
for the key properties of the photons such as spectral shape,
polarization, and spatial mode, in addition to the relative
temporal delay.
The results depend on the permutational symmetry of the

two interfering particles. We consider a basis vector v
accounting for the permutational symmetries as a natural
basis vector for quantum interference. The components of v
are matrix functions having definite permutation sym-
metries in the entries of the unitary network matrix B.
The first component is chosen to be the permanent (per) of
the matrix, which is fully symmetric under permutation of
rows or columns; the second component is the determinant
(det) and is fully antisymmetric under permutation. These

are the only two possible symmetries when permuting two
objects. By using the basis vector v, we obtain an elegant and
compact form expression for the coincidence ratePcðΔτÞ, in
which the rate matrix R̂ð2ÞðΔτÞ takes a diagonal form, with
entries depending only on properties of the input state:

PcðΔτÞ ¼
Z

dω
Z

dω0jhψ in11 jB̂†â†1ðωÞâ†2ðω0Þj0ij2

≔ v†½R̂ð2ÞðΔτÞ�v

¼
�
perðBÞ
detðBÞ

�†�1
2

�
1 0

0 1

�

þ 1

2
jβ12ðΔτÞj2

�
1 0

0 −1
���

perðBÞ
detðBÞ

�
; ð1Þ

where jβ12ðΔτÞj2 is a distinguishability function originating
from the spectrotemporal overlap of two photons,

βij ¼
Z

dωαiðωÞαjðωÞeiωðτi−τjÞ; ð2Þ

and is equal to 1
2
ζe−ξΔτ2 for single photons of Gaussian

spectral shape as used in our experiment. Here, 0 ≤ ζ ≤ 1 is
derived from the mode-overlap integral above, jψ in11i ¼
Â†
1ðα1ÞÂ†

2ðα2Þeiðω1τ1þω2τ2Þj0i is the state impinging on the
beam splitter, and ξ is a factor describing the shape of the
interference feature (see Appendix A 1 for further details).
Note that the distinguishability parameter βij can be gen-
eralized to account formismatch in any degree of freedomof
the photons.
The ratio of the two nonzero entries of the rate matrix

R̂ð2Þ
11 and R̂ð2Þ

22 reveals the nature of the nonclassical
interference of two photons of arbitrary coherence. For
indistinguishable photons (where ζ ¼ 1) and zero temporal

delay Δτ, R̂ð2Þ
22 is also zero and the output probability is

proportional to the permanent of B only. The permutation-
ally symmetric nature of identical bosonic particles, e.g.,
photons, is reflected in transition amplitudes determined by
a permutationally symmetric function—the permanent.
Temporal delays larger than the coherence time of the

photons, Δτ ≫ τc, result in complete loss of coherence as
the mode-overlap integral jβ12ðΔτÞj2 of Eq. (1) converges
to zero. In this case, often characterized as classical

behavior of two photons, R̂ð2Þ
11 ¼ R̂ð2Þ

22 ¼ ð1=n!Þ ¼
ð1=2!Þ ¼ 0.5. The state is now an equal mixture of
symmetric and antisymmetric parts and does not exhibit
any of the indistinguishability features associated with
quantum interference.
This analysis can be generalized to the quantum inter-

ference of two photons in larger interferometric networks:
the two input ports and the two output ports of such a
network define 2 × 2 scattering submatrices ~B, the vector v
now contains matrix functions of ~B and the rate matrix
R̂ð2ÞðΔτÞ stays identical, independent of ~B. Figure 2(b)
highlights how this natural basis cleanly separates effects

FIG. 2. Two-photon nonclassical interference. Two photons of
temporal coherence τc enter a beam splitter through different
input ports. (a) The coincidence output probability Pc that they
leave in two different output ports is plotted with respect to a
relative temporal delay Δτ. This delay is used to tune the
distinguishability of the otherwise identical photons. The blue
curve shows Pc for a 50=50 beam splitter, and the green one for a
67=33 beam splitter. (b) Contribution of the permanent (per) and
determinant (det) to the output probability for a coincident
detection event Pc. It is the same for both beam splitters because
this description is independent of the interferometer. In the case
for zero delay (Δτ ¼ 0), only the permanent contributes. By
explicitly calculating the permanent, which is zero for a 50=50
beam splitter, the vanishing coincidence probability Pc (a) for
zero delay is obtained.
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arising from distinguishability of the input state from
effects of the interferometric network: whereas the numeri-
cal values of the permanent and the determinant depend on
the matrix B, the ratio of their contributions depends only
on partial distinguishability of the photons, irrespective of
the details of the interferometer.

III. QUANTUM INTERFERENCE
OF THREE BOSONS

Consider a scenario where two photons are nearly
indistinguishable and the third is delayed significantly.
Adding a third photon leads to situations that can no longer
be understood by the weighted sum of the permanent and
determinant. In order to describe such a behavior, a more
general matrix function, the immanant, is required [7,11].
The immanant [12] expands the concept of the permanent
and determinant to mixed permutation symmetries; the
immanant is defined as

immfλgðMÞ ¼
X
σ

χfλgðσÞ
Y
i

MiσðiÞ; ð3Þ

forMij matrix elements ofM, with χfλgðσÞ of the element σ
in the representation fλg, and σðiÞ the result of permuting
column i to column j ¼ σðiÞ. The permanent, for which
every χfngðσÞ ¼ 1, and the determinant, for which
χf1ngðσÞ ¼ sgnðσÞ, are special cases of the immanant for
the fully symmetric representation (conventionally labeled
fng) and alternating representation (conventionally labeled
f1ng) of Sn, the permutation group of n objects. The
character table of S3 is provided in Table I.
For three photons there is, in addition to the

permanent and the determinant, one immanant correspond-
ing to the representation f2; 1g or Young diagram of S3.
For simplicity, we henceforth refer to this immanant as
“the immanant” and refer explicitly to the permanent and
determinant as needed. The immanant of M is given by

immðMÞ ¼ 2M11M22M33

− ðM12M23M31 þM13M21M32Þ: ð4Þ
Unlike the permanent or the determinant, an immanant
does not come back to a multiple of itself if we permute,
say, columns 1 and 2. Indeed, one finds, by permuting
columns of M, a total of four linearly independent
immanants. They can be organized in two pairs of linear
combinations of immanants so that, upon permutations, the
elements of each pair mix among themselves but not across
pairs. Although such behavior under permutation may
appear unseemly, it is not at all uncommon:

jψi ¼ a†1ðω1Þ½a†2ðω2Þa†3ðω3Þ þ a†3ðω2Þa†2ðω3Þ�j0i ð5Þ
transforms back to itself upon the permutation ω2 ↔ ω3,
but not under ω1 ↔ ω2. Such states of mixed permutation
symmetries are common in the many-body physics
problem.
In the smallest instance of a three-photon quantum

interference, the photons are injected into an m ¼ 3 mode
interferometric network and measured as threefold coinci-
dences at the three output ports. The optical transformation
implemented by the interferometer can be any 3 × 3 linear
optical transformation T̂, and the distinguishability of the
three photons is arbitrarily tunable by setting the relative
temporal delays: Δτ1 between the first and second photon
and Δτ2 between the second and third photon. The
coincidence rate P111ðΔτ1;Δτ2Þ is given by

P111ðΔτ1;Δτ2Þ ¼
Z

dω
Z

dω0
Z

dω00jhψ in111 jT̂†â†1ðωÞâ†2ðω0Þâ†3ðω00Þj0ij2 ð6Þ

¼ v†3½R̂ð3ÞðΔτ1;Δτ2Þ�v3 ð7Þ

¼ ðP̂ Ŝ v3Þ†½1þ ρ12jβ12j2 þ ρ23jβ23j2 þ ρ13jβ13j2 þ ρ132β
�
12β

�
23β13 þ ρ123β12β23β

�
13�ðP̂ Ŝ v3Þ ð8Þ

¼ ðP̂ Ŝ v3Þ†½1þ ρ12ζ12e−ξ12Δτ
2
1 þ ρ23ζ23e−ξ23Δτ

2
2 þ ρ13ζ13e−ξ13ðΔτ1−Δτ2Þ

2

þ ζ123ðρ132eξ�123ðΔτ1;Δτ2Þ þ ρ123eξ123ðΔτ1;Δτ2ÞÞ�ðP̂ Ŝ v3Þ; ð9Þ

where v3, P̂, and Ŝ are given explicitly in Eq. (A19). The terms β12, β23, and β13 are distinguishability parameters defined
analogously to Eq. (2). In Eq. (9) these parameters are computed for single photons of Gaussian spectral shape as used in
our experiment. Our key point is that, in Eq. (7), the rate matrix R̂ð3ÞðΔτ1;Δτ2Þ can always be brought to block-diagonal
form, containing two 1 × 1 blocks and one 4 × 4 block. Indeed, the matrices in Eq. (9) can always be further refined so as to
take a final block-diagonal form:

TABLE I. The character table for S3.

Elements 1 fP12; P13; P23g fP123; P132g
irrep λ χλð1Þ χλðPabÞ χλðPabcÞ Dimension

1 1 1 1
2 0 −1 2

1 −1 1 1
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1 ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCA
; ρ12 ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

1
CCCCCCCCCA
;

ρ23 ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 − 1
2

− ffiffi
3

p
2

0 0

0 0 − ffiffi
3

p
2

1
2

0 0

0 0 0 0 − 1
2

− ffiffi
3

p
2

0 0 0 0 − ffiffi
3

p
2

1
2

1
CCCCCCCCCA
; ρ13 ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 − 1
2

ffiffi
3

p
2

0 0

0 0
ffiffi
3

p
2

1
2

0 0

0 0 0 0 − 1
2

ffiffi
3

p
2

0 0 0 0
ffiffi
3

p
2

1
2

1
CCCCCCCCCA
;

ρ123 ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 − 1
2

− ffiffi
3

p
2

0 0

0 0
ffiffi
3

p
2

− 1
2

0 0

0 0 0 0 − 1
2

− ffiffi
3

p
2

0 0 0 0
ffiffi
3

p
2

− 1
2

1
CCCCCCCCCA
; ρ132 ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 − 1
2

ffiffi
3

p
2

0 0

0 0 − ffiffi
3

p
2

− 1
2

0 0

0 0 0 0 − 1
2

ffiffi
3

p
2

0 0 0 0 − ffiffi
3

p
2

− 1
2

1
CCCCCCCCCA
: ð10Þ

The vector P̂ Ŝ v3 of Eq. (9) is given explicitly by

P̂ Ŝ v3 ¼

0
BBBBBBBBB@

perðTÞ
detðTÞ

1

2
ffiffi
3

p immðTÞ þ 1

2
ffiffi
3

p immðT312Þ
1
6
immðTÞ − 1

3
immðT132Þ − 1

6
immðT213Þ þ 1

3
immðT312Þ

1
6
immðTÞ þ 1

3
immðT132Þ þ 1

6
immðT213Þ þ 1

3
immðT312Þ

− 1

2
ffiffi
3

p immðTÞ þ 1

2
ffiffi
3

p immðT213Þ; :

1
CCCCCCCCCA
; ð11Þ

where Tijk is the matrix T in which rows 1, 2, and 3 have
been rearranged in order i, j, k. In addition, â†1ðωÞ, â†2ðω0Þ,
and â†3ðω00Þ are the creation operators in modes 1,2,3 of T
for photons with different spectral shape functions depen-
dent on the frequency variables ω;ω0;ω00. Here, jψ in111i ¼
Â†
1ðω1ÞÂ†

2ðω2ÞÂ†
3ðω3Þeiðω1τ1þω2τ2þω3τ3Þj0i is the three-

photon state impinging on the interferometer, with
A†
kðωkÞ defined in Eq. (A2).
The form of the matrices in Eq. (10) is fully dictated by

the theory of the group of permutation of three objects: the
blocks in Eq. (10) correspond to irreducible representations
of this group. The block diagonalization can be done using
several methods; one algorithm can be found in Chap. 4 of
Ref. [13]. No further reduction into smaller blocks is
possible; i.e., the vector P̂ Ŝ v3 is optimal, in the sense

that it is the vector (up to a choice of which matrices ρ
are diagonalized) that will produce the simplest form of
the rates. Indeed, an expression for the coincidence rate
of Eq. (6), expanded in terms of immanants, determi-
nants, and permanents, is also given in Eq. (A12); it is
a linear superposition of 60 terms. However, utilizing a
symmetry-adapted basis allows for the compact expres-
sion given in Eqs. (9) and (7) (see Appendix A 2 for
further details). Here, the four linearly independent
immanants, the permanent, and the determinant of T
constitute the components of a six-dimensional basis
vector P̂ Ŝ v3.
Much like Eq. (1), the various ζ terms of Eq. (9) are

derived from the mode-overlap integral while the ξ terms
describe the shape of the interference feature. In this
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notation the overlap terms weight a sum of six matrices: the
identity matrix and five permutation matrices ρ12, ρ13, ρ23,
ρ123, and ρ132, the subscripts of which label the permutation
operation.

IV. NATURAL BASIS FOR THREE PHOTONS

Components of the natural basis vector P̂ Ŝ v3 intro-
duced to yield the fully block-diagonal form of Eq. (9)
have specific permutation properties: components of one
symmetry type transform to components of the same type
under permutation; i.e., they are decoupled under per-
mutation. Components of P̂ Ŝ v3 thus play the role of
normal coordinates for the nonclassical interference of
photons.
Equation (9) highlights the six different permutational

possibilities for three photons. Summing the matrices
inside the square brackets yields the 6 × 6 rate matrix
R̂ð3ÞðΔτ1;Δτ2Þ of Eq. (7). This R̂ð3ÞðΔτ1;Δτ2Þ contains all
the information regarding the input state, e.g., mode
mismatch and temporal delay, to specify the nonclassical
interference of three photons independent of the scattering
transformation T.
Two entries of the block-diagonal rate matrix are

sufficient for an interpretation. Fper ¼ jR̂ð3Þ
11 ðΔτ1;Δτ2Þj2

quantifies the fraction of the output probability distribution
proportional to the modulus square of the permanent; the
corresponding basis component is fully symmetric under

permutation. Fdet ¼ jR̂ð3Þ
66 ðΔτ1;Δτ2Þj2 quantifies the frac-

tion of the output probability distribution proportional to
the modulus square of the determinant; the corresponding
component is antisymmetric under permutation. The
contribution proportional to moduli square of the imman-
ants can also be explicitly calculated. When only inter-
ested in their overall contribution, it is given as
Fimm ¼ 1 − Fper − Fdet. In the case of perfectly overlap-
ping photons, Fper ¼ 1, and therefore only the permanent
of the scattering matrix contributes to the output probability
distribution. Classical behavior of the photons can be
identified for Fper ¼ Fdet ¼ 1

6
.

As in the two-photon case, the input state and the
interferometer decouple in the natural basis. As a conse-
quence, the treatment of the quantum interference of
three photons in larger interferometric networks consist-
ing of many modes becomes very efficient. For such a
problem it is sufficient to calculate the rate matrix R̂ð3Þ

only once. The scattering matrix T, necessary to calculate
the basis vector v3 for a specific element of an output
probability distribution, is just a 3 × 3 submatrix of the
larger scattering matrix. It is specified by the input ports of
the photons and the ports in which they exit the interfer-
ometer. To obtain multiple elements of a probability
distribution, it is sufficient to determine their respective
components in v3.

V. COINCIDENCE LANDSCAPE

In the experiment, four-photon events generated by
higher-order emission from a spontaneous parametric
down-converter are distributed to four different spatial
modes. Relying on a detection event in the trigger mode
and postselection, the three-photon input state, one photon
in each input mode coupled to the interferometer, is
heralded. We ensure that all photons are indistinguishable
in a polarization basis. The spectral properties of these
photons are independently measured using a single-photon
spectrometer. Their relative temporal delay Δτ1 and Δτ2
can be set using motorized delay lines. The transformation
of the femtosecond-written integrated interferometer, a
5 × 5 unitary matrix, is recovered using the reconstruction
method specified in Appendix A 3.
Injecting the photons in three input ports of the inter-

ferometer and detecting them in three separate output
ports uniquely selects a 3 × 3 scattering submatrix T
[see Figs. 3(a) and 3(d)]. For each 3 × 3 submatrix, the
use of a precisely tunable delay allows us to reveal the
full spectrum and thereby the nature of the nonclassical
interference. We visualize this as a three-dimensional
coincidence landscape as shown in Figs. 3(b) and 3(e).
The relief of such a landscape features distinct “landforms”
which are in correspondence with distinguishability fea-
tures of the photons.
In the center region, Δτ1 ≈ Δτ2 ≈ 0� τc, a peak or dip

arises due to constructive or destructive interference of all
three photons. In the absence of any spectral distinguish-
ability, the absolute zero position Δτ1 ¼ Δτ2 ¼ 0 corre-
sponds to 100% contribution from the permanent of T.
Along the three axes Δτ1 ¼ 0, Δτ2 ¼ 0, and Δτ1 ¼ Δτ2,

valleys or ridges form due to the nonclassical interference
of two indistinguishable photons with the third one being
partially distinguishable. Along those ridges and valleys
the contributions to the output probability come from the
permanent and the immanants of the scattering matrix.
“Classical” behavior, i.e., complete distinguishability, of

the three photons is associated with plateaus for temporal
delays, Δτ1 ≈ −Δτ2 ≫ j � τcj. For such large temporal
delays along the antidiagonal axis, all mode-overlap
integrals of Eq. (9) converge to zero. Consequently, these
are the areas where determinants of the scattering matrix
contribute, accounting for the antisymmetrical part of the
input state. Coincidences for six points of pairwise different
temporal delays, P1–P6, for two different scattering sub-
matrices [see, for instance, Figs. 3(c) and 3(f)] are mea-
sured. These six points are selected because they highlight
the connection between landscape features, permutation
symmetries, and partial distinguishability. Furthermore,
they provide a sufficient set of experimental data for fitting
the coincidence landscapes. A reduced χ2 of 1.38 and 1.10
for the two landscapes quantifies the overlap between our
theory and the experiment. Our theory assumes a single
photon per input mode; hence, the deviations are most
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likely due to higher-order emissions and frequency corre-
lations of the input state.
The landscape interpretation can be extended as needed

to the interference of larger numbers of photons n,
which generate n-dimensional “hyperlandscapes.” These
are spanned by n − 1 axes of pairwise temporal delays with
the last axis representing the actual coincidence rate. The
landforms range from complex n-dimensional features
corresponding to the partial indistinguishability of all n
photons to the flat plateaus associated with completely
distinguishable photons.

A. Systematic exploration of partial distinguishability

We investigate generalized nonclassical interference of
three photons in a five-moded interferometric network in
theory and experiment. This serves to illustrate the full

permutational spectrum of a generalized nonclassical
interference for complex networks exhibiting a generic
structure. The photons exhibit slight spectral mismatch
and are thus never fully indistinguishable; additionally,
the level of partial distinguishability can be increased
by controlling temporal delays. Figure 4(a) illustrates the
result for a very small degree of partial distinguishability,
whereas in Figs. 4(b) and 4(c) the partial distinguish-
ability is increased by varying the temporal delay along
a diagonal delay axis Δτ1 ≈ Δτ2. The extreme case of
complete distinguishability Δτ1 ≈ −Δτ2 ≫ τc, and thus
classical behavior is shown in Fig. 4(d). As a reference
we include in all figures the ideal case of zero delay
and perfect indistinguishability as gray bars. The group
theoretical interferometer-independent contributions Fper,
Fdet, and Fimm are contained as an inset in the legend of
each figure.

FIG. 3. Three-photon coincidence landscapes. Three photons enter the interferometric network, one each in modes 1, 2, and 4
(highlighted in yellow), and exit the network in modes (a) 3, 4, and 5 and (d) 1, 3, and 4, respectively (highlighted in blue). The
intersections of the inputs’ columns and the outputs’ rows uniquely select matrix entries that constitute 3 × 3 submatrices. Tuning the
temporal delay of the three photons with respect to each other (Δτ1 and Δτ2) gives rise to coincidence landscapes [(b) and (e)]. Their
temporal distinguishability determines the degree of nonclassical interference and therefore the probability to detect such an event. Six
characteristic points (P1–P6) of each landscape are experimentally sampled. Theoretical prediction (left bars, shaded) and
experimentally obtained output probabilities (right bars) for the six points and both output combinations are shown in (c) and (f).
The reduced χ2 is 1.38 and 1.10, respectively, and the experimental errors are calculated as standard deviations.
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The elements of each output probability distribution are
recovered by calculating the correspondingmatrix functions.
Note that for each element the absolute value of these matrix
functions, e.g., jperðTÞj2 or j detðTÞj2, can vary largely
depending on the scattering submatrix T. This is pronounced
for the output event 123,where jperðT123Þj2 ≈ 1

5
j detðT123Þj2.

In general, the fraction of the output probability distribution
proportional to the permanent drops rapidly with increasing
distinguishability. Instead, contributions from immanants
become dominant and reflect cases where two of the three
photons interfere nonclassically.
For large delays along the diagonal axis Δτ1 ≈ Δτ2 ≫ τc,

two photons stay nearly indistinguishable and the contri-
bution from the determinant is suppressed to Fdet ≈ 0
[see Fig. 4(c)]. For comparably large delays along the
antidiagonal axis, Δτ1 ≈ −Δτ2 ≫ τc, the three photons’
wave functions do not overlap anymore and the determinant

contributes with Fdet¼ 1
6
[see Fig. 4(d)]. This is the case of

classical behavior of the three photons [see Fig. 4(d)] and
can always be identified by an equal contribution from the
permanent and determinant: Fper ¼ Fdet ¼ ð1=3!Þ in the
case of a three-photon interference and Fper ¼Fdet¼ð1=n!Þ
for the nonclassical interference of n photons.
Our theory emphasizes the permutation symmetries of n

photons using the representation theory of the symmetric
group Sn. The theory is thus independent of the number of
modes m in the interferometer, a feature that is extremely
convenient for large-scale networks where m ≫ n, even if
the number of permutations of the output increases as n!.

B. From permanents to immanants

Quantum computing leverages quantum resources to
efficiently perform certain classically hard computations
[14]. Whereas many quantum algorithms solve a certain

FIG. 4. Experimental output distribution for indistinguishable, semidistinguishable, and distinguishable photons. Various temporal
delays for three photons lead to different contributions of permanents, immanants, and determinants. The normalized output probability
distributions for the three photons is measured as coincidences from different spatial modes, resulting in ten elements. For all temporal
delays the three photons exhibit slight spectral mismatch. Panel (a) depicts the case for a small temporal offset Δτ1 ≪ τc ≫ Δτ2 (P1 of
Fig. 3), whereas for (b) and (c) this delay is increased along a diagonal axis Δτ1 ≈ Δτ2 (P3 and P4 of Fig. 3). The extreme case of
complete distinguishability and therefore classical behavior is shown in (d) (P6 of Fig. 3). As a reference, the gray bars illustrate the case
for perfect indistinguishability and therefore only contribution from the permanent of the scattering submatrix. The interferometer
independent contribution Fper, Fdet, and Fimm is shown in the figure legend. The error bars of the experimental data are standard
deviations over 19 independent runs.
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decision problem, BosonSampling introduces a new para-
digm: it seeks efficient sampling of a distribution of
permanents of matrix transformations, which is a task that
is hard to implement efficiently on classical computers.
In order to scale BosonSampling to larger instances, two

main issues need to be addressed. The first issue is the
technology [15–17] needed to increase the size of the
instances implemented. The second issue is the handling of
possible errors [18–20]. BosonSampling is a purely passive
optical scheme and therefore lacks error-correction capa-
bilities [21]. Only in the ideal case where the interfering
photons are indistinguishable in all degrees of freedom is
the resulting output probability distribution proportional to
the permanent only. Our analysis exposes that this con-
dition is rather fragile and therefore distinguishability must
be regarded as the dominant source of error. Remarkably,
large classes of immanants are known to be in the same
complexity class as permanents [22,23]. Thus, it is natural
to ask if the output probability distributions depending
largely on immanants rather than just the permanent are
also computationally hard. Whether this holds for sampling
from these distributions is an active field of research.

C. Generalization to higher number of photons

The theory presented here in detail for the case of n ¼ 3
photons can be generalized to a larger number of photons n.
The rate matrix becomes a matrix of dimension n! × n! and
carries the so-called regular representation of Sn. It can be
block diagonalized exploiting the same methods used to
block diagonalize the regular representation. The algorithm
to obtain this block-diagonal form for the rate matrix is

described in Table 2 for any n-photon input. As highlighted
in Sec. VA, the rate matrix is independent of the number of
modes in the interferometer. We demonstrate the use of this
algorithm for a five-photon input into a nine-mode inter-
ferometer. In this specific case of n ¼ 5, the rate matrix is of
dimension 5! ¼ 120 and can be expressed as

P
σ∈S5ρσOσ ,

where ρσ spans a 120 × 120 representation Γ of S5,
and where Oσ contains various delay-dependent factors.
The representation Γ is reducible and decomposes as

ð12Þ
The terms in Eq. (12) are respectively associated with

photons of different partial distinguishability: The first term
is associated with fully indistinguishable photons, the
second term with four photons arriving with no delay and
a last photon fully distinguishablewith respect to the quartet,
and the third term with three photons arriving with no delay
and a second pair of photons with no relative delay between
themselves. The pair and the trio are fully separable in the
temporal domain. The remaining terms can be interpreted in
the same fashion, with the last term covering the case of all
five photons being fully distinguishable with respect to each
other. Each term is labeled by the Young diagram of its
partition and associated with an immanant. In general, the
coincidence rate is a sum of contributions from modulus
squared of linear combinations of these immanants, which
can be constructed using the character table for S5, as can be
found in for instance in Ref. [12]. These linear combinations

TABLE II. Algorithm to block diagonalize the rate matrix.

Input
n Number of input photons
U A n × n unitary matrix
αi Spectral function of the ith photon

Output
RðnÞ Rate matrix of n-photon coincidence that is

block diagonalized in blocks labeled by the partitions of Sn
Routine

1. Find ρσ , the regular representation of the element σ ∈ Sn.
2. Calculate the overlap functions between the n photons for
all σ ∈ Sn:
Oσ ¼

Q
n
i¼1½

R
dωiαiðωiÞαiðωσðiÞÞ expð−iωiτi þ iωσðiÞτiÞ�.

3. Make xlist, a list of
Q

n
i¼1 UσðiÞ;i for all σ ∈ Sn.

4. Let ½Ui;σðjÞ� be the matrix U with columns j permuted to σðjÞ
for σ ∈ Sn, and define the function immλðUÞ to be
immλðUÞ ¼ P

σ∈SnχλðσÞ
Q

n
i¼1 Ui;σðiÞ,

where λ is a partition of Sn and χλðσÞ is the character of σ in the
partition λ. Make immlist, a list of n! elements that comprises
immλð½Ui;σðjÞ�Þ that are linearly independent of one another.

5. Find the n! × n! matrix S in the linear equation
xlist ¼ S · immlist.

6. Return RðnÞ ¼ S† · ðPσ∈SnρσOσÞ · S.
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of immanants can be found using, for instance, class
operator methods [13].
The algorithm described in Table II can be used to

compute the rate matrix that is block diagonalized in the
partitions listed in Eq. (12) for five photons propagating

through an interferometer. Note that the specific input
chosen and the size of the interferometer, in Fig. 5 a 9 × 9
interferometer, affect only the basis vectors. For this

exemplary case we look at the
�
9

5

�
¼ 126 different ways

FIG. 5. Five-photon BosonSampling including distinguishability. Simulation of a BosonSampling instance of five photons
propagating through an interferometric network of nine modes. The output probability distribution of five photons exiting the
interferometer in five different modes is normalized and contains 126 elements. Owing to the large size of this probability distribution,
we choose not to list them individually, and we label the horizontal axes by “elements.” Panel (a) depicts the close-to-the-ideal case
where realistic errors such as slight spectral mismatch and temporal delay (Δτi ≤ 1

20
τc) of the photons lead to a small degree of partial

distinguishability. Panel (b) shows a case where the interfering photons exhibit increased partial distinguishability (Δτi ≤ 1
5
τc). In these

exemplary output probability distributions [(a) and (b)], contributions from permanents (per) and immanants ( , , ) arise. The
immanant contributions cover physical scenarios with different symmetries under exchange of five photons. The labels of the immanants
describe the number of photons that are distinguishable. , for instance, is the contribution from the case when four photons are
indistinguishable from one another but distinguishable from the fifth photon.
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in which five photons can exit a nine-mode interferometer,
each photon in a separate mode. Permanents, , and

immanants of the partitions, , , and , con-

tribute to this 126-element probability distribution and are
computed as the trace of their respective block matrices
given by the algorithm of Table II. In Fig. 5, this output
probability distribution and its substructure is shown for
two different degrees of partial distinguishability.

VI. DISCUSSION

We present a novel analysis of multiphoton quantum
interference revealing the full permutational spectrum of
input states with arbitrary distinguishability. A compre-
hensive physical interpretation is achieved by establishing
a correspondence between matrix immanants and these
mixed symmetry input states. We introduce a rate matrix
containing all the information on the nonclassical interfer-
ence and basis vectors containing the information on the
interferometric network. Output probabilities are recovered
as an inner product of these vectors with the rate matrix
serving as a metric. The rate matrix is block diagonalized
and each block corresponds to a different physical scenario
of nonclassical interference. This indicates that this block
diagonalization and consequent interpretation are not only
fundamental but also universal features of multiphoton
interferometry. We experimentally confirm our theory by

recovering the full coincidence landscape of three arbitrar-
ily distinguishable photons. We show that the theory can be
applied to higher numbers of photons with an exemplary
simulation of the nonclassical interference of five photons
through a 9 × 9 network. Our approach thus provides a
deeper understanding of the rich spectrum of multiphoton
nonclassical interference. While passive schemes like
BosonSampling benefit most from this approach, it applies
analogously to pivotal building blocks of linear optical
quantum computing [24,25] as crucial nondestructive
two-qubit gates exploit ancillary photons and thus rely
on multiphoton interference [26,27].

VII. METHODS

A. State generation

ATi:sapphire oscillator emitting 150-fs pulses at 789 nm
and a repetition rate of 80 MHz is frequency doubled in a
LiB3O5 (LBO) crystal (see Fig. 6 for a schematic of the
experimental setup). The output power of this second
harmonic generation can be controlled by a power regu-
lation stage consisting of a half-wave plate (HWP) and a
polarizing beam splitter (PBS) placed before the LBO
crystal. The resulting emission at 394.5 nm is focused into a
2-mm-thick β-BaB2O4 (BBO) crystal cut for degenerate
noncollinear type-II down-conversion [28]. A compensa-
tion scheme consisting of HWPs and 1-mm-thick BBO

FIG. 6. Experimental setup. Four photons are generated via spontaneous parametric down-conversion and distributed to four spatial
modes with two PBSs. A fourfold coincidence event consisting of three photons exiting the network and a trigger event postselects the
desired input state. The delay lines allow us to tune the distinguishability and therefore the quantum interference of the three photons
propagating through the waveguide. The integrated circuit is shown in a Mach-Zehnder decomposition and consists of eight beam
splitters and 11 phase shifters.
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crystals is applied to counter temporal and spatial walk-off.
The two spatial outputs of the down-converter pass through
narrow band interference filters (λFWHM ¼ 3 nm) to
achieve a coherence time greater than the birefringent
walk-off due to group velocity mismatch in the crystal
(jvge − vgo j × half-crystal thickness). Additionally, this ren-
ders the photons close to spectral indistinguishability. The
down-conversion source is aligned to emit the maximally
entangled Bell state jϕþi ¼ ð1= ffiffiffi

2
p ÞðjHHi þ jVViÞ when

pumped at 205-mW cw-equivalent pump power. The state
is coupled into single-mode fibers (Nufern 780-HP)
equipped with pedal-based polarization controllers to
counter any stress-induced rotation of the polarization
inside the fiber. Each of these spatial modes is then
coupled to one input of a PBS while its other input is
occupied with a vacuum state. The outputs pass HWPs
and are subsequently coupled to four polarization-
maintaining (PM) fibers (Nufern PM780-HP). Temporal
overlap is controlled by two motorized delay lines that
exhibit a bidirectional repeatability of �1 μm. Temporal
alignment precision is limited by other factors in the
setup to approximately �5 μm and is therefore within a
precision of 2.5% of the coherence length of the photons.
The polarization-maintaining fibers are mated to a single-
mode fiber v-groove array (Nufern PM780-HP) with a
pitch of 127 μm and butt coupled to the integrated
circuit. The coupling is controlled by a manual six-axis
flexure stage and is stable within 5% of the total single-
photon counts over 12 h. The output fiber array consists
of a multimode (MM) v–groove array (GIF-625) and the
photons are detected by single-photon avalanche
photodiodes that are recorded with a home-built field-
programmable gate array logic. The coincidence time
window is set to 3 ns. In order to measure the six points
of the coincidence landscapes, a three-photon input state
is injected into the integrated network (see Appendix A 5
for further details). Therefore, the BBO is pumped with
cw-equivalent power of 700 mW and the ratio of the six-
photon emission over the desired four-photon emission is
measured to be below 5%.

B. Integrated network fabrication

The integrated photonic networks are fabricated using
a femtosecond direct–write writing technology [29,30].
Laser pulses are focused 370 μm below the surface of a
high-purity fused silica wafer by a NA ¼ 0.6 objective.
The 200-nJ pulses exhibit a pulse duration of 150 fs at
100 KHz repetition rate and a central wavelength of
800 nm. In order to write the individual waveguides, the
wafer is translated with a speed of 6 cm=s. The wave-
guide modes exhibit a mode field diameter of 21.4 ×
17.2 μm2 for a wavelength of 789 nm and a propagation
loss of 0.3 dB=cm. This results in a coupling loss of
−3.5 dB with the type of input fibers used in this

experiment. Coupling to the output array results in
negligible loss due to the use of multimode fibers.
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APPENDIX A SUPPLEMENTARY INFORMATION

1. Two-photon nonclassical interference

Two photons injected into different inputs of an arbitrary
beam splitter or a network built from arbitrary beam
splitters and phase shifters will interfere nonclassically
[10,31]. This input state can be expressed as

jΨin11i ¼ ½Â†
1ðα1Þeiω1τ1 �½Â†

2ðα2Þeiω2τ2 �j0i; ðA1Þ

with

Â†
i ðαiÞ ¼

Z
∞

0

dωiαiðωiÞâ†i ðωiÞ; ðA2Þ
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for A†
i ðαiÞ, a creation operator for a photon with spectral

function

jαðωiÞj2 ¼
1ffiffiffiffiffiffi
2π

p
σi
exp

�
− ðωi − ωc;iÞ2

2σ2i

�
ðA3Þ

centered at time τi. The frequency-mode creation operators
on the rhs of Eq. (A2) satisfy the commutator relation

½âiðωÞ; â†jðω0Þ� ¼ δijδðω − ω0Þ1; ðA4Þ

with 1 the identity operator. This commutation relation also
defines the photons’ symmetry under permutation opera-
tions. For two photons it is sufficient to define their relative
temporal delay as Δτ ¼ τ1 − τ2. Only in the case of ideal
bosonic particles exhibiting no modal mismatch and perfect
temporal overlap, i.e., Δτ ¼ 0, does the rhs of Eq. (A4)
become the well-known bosonic commutator relation
describing perfect symmetry under exchange. When the
two-photon input state [see Eq. (A1)] is mixed via a
transformation matrix B ¼ U2×2 and projected on an output
where the two photons exit in different modes, the output
probability becomes

PcðΔτÞ ¼
Z

dω1

Z
dω2jhΨin11 jB̂†â†1ðω1Þâ†2ðω2Þj0ij2

ðA5Þ

¼
�
perðBÞ
detðBÞ

�†�1
2

�
1 0

0 1

�
þ1

2
ζe−ξΔτ2

�
1 0

0 −1
��

×

�
perðBÞ
detðBÞ

�
ðA6Þ

¼ v†2½R̂ð2ÞðΔτÞ�v2; ðA7Þ

with

ζ ¼ 2σ1σ2
σ21 þ σ22

exp

�
− ðωc;1 − ωc;2Þ2

2ðσ21 þ σ22Þ
�
; ξ ¼ σ21σ

2
2

σ21 þ σ22
ðA8Þ

denoting factors arising from the spectral overlap integral
and

v2 ¼
1ffiffiffi
2

p
�
perðBÞ
detðBÞ

�
ðA9Þ

the new basis vector constituted by matrix functions of the
scattering submatrix T. As a second-order correlation effect,
this nonclassical interference is dependent on the permuta-
tional symmetry of the interfering wave functions also
reflected in the basis vector v2. For the case of indistinguish-
able photons (ωc;1 ¼ ωc;2, σ1 ¼ σ2, or Δτ ¼ 0), the output
probability is only proportional to the permanent. This is a
function symmetric under permutation of rows of the trans-
formation matrix arising in photon interferometry due to
bosonic exchange symmetry.However,with loss of complete
indistinguishability (ωc1 ≠ ωc2, σ1 ≠ σ2, and Δτ ≠ 0),
Eq. (A6) becomes proportional to a combination of the
determinant and the permanent. This is a consequence of
the input state losing its symmetry under exchange.
Equation (A7) decouples the influence of the interferometer
from the influence of the input state. The latter is contained in
the diagonal 2 × 2 rate matrix R̂ð2ÞðΔτÞ, whereas the
description of the interferometer is absorbed in the new
basis vector v2. The two nonzero entries of the rate matrix,

R̂ð2Þ
11 and R̂ð2Þ

22 , are sufficient to reveal the nature of the
nonclassical interference of two photons of arbitrary coher-

ence. Where R̂ð2Þ
11 quantifies the contribution from the

permanent of the scattering submatrix, R̂ð2Þ
22 quantifies the

contribution from the determinant of the scattering subma-
trix. The output probability Pc is recovered by calculating
those matrix functions.

2. Three-photon nonclassical interference

Nonclassical interference of photons depends on indis-
tinguishability of the interfering photons and transforma-
tions mixing the modes. Adding a third photon noticeably
increases the complexity. An input state corresponding to
three photons in three different transverse spatiotemporal
modes can be described as

jΨin111i ¼ ½A†
1ðα1Þeiω1τ1 �½A†

2ðα2Þeiω2τ2 �½A†
3ðα3Þeiω3τ3 �j0i:

ðA10Þ

For three photons it is sufficient to define two relative
temporal delays, Δτ1 ¼ τ1 − τ2 and Δτ2 ¼ τ3 − τ2. When
this input state is transformed via a submatrix T ¼ U3×3
and projected on an output where the three photons exit in
different modes, the fully expanded output probability can
be written as
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P111ðΔτ1;Δτ2Þ ¼
Z

dω
Z

dω0
Z

dω00jhΨin111 jT̂†a†1ðωÞa†2ðω0Þa†3ðω00Þj0ij2 ðA11Þ

¼ 1

6
j detðTÞj2 þ 2

9
jimmðT132Þj2 þ

1

9
imm�ðT132ÞimmðT213Þ þ

1

9
immðT132Þimm�ðT213Þ

þ 2

9
jimmðT213Þj2 þ

2

9
jimmðT231Þj2 þ

2

9
jimmðTÞj2 þ 1

9
immðT231Þimm�ðTÞ

þ 1

6
jperðTÞj2 þ 1

9
immðTÞimm�ðT231Þ

þ ζ13 expð−2ξ13ðΔτ1 − Δτ2Þ2Þ
�
− 1

6
j detðTÞj2 − 2

9
immðTÞimm�ðT132Þ − 1

9
immðTÞimm�ðT213Þ

−
1

9
imm�ðT132ÞimmðT231Þ þ

1

9
imm�ðT213ÞimmðT231Þ − 1

9
immðT132Þimm�ðT231Þ

þ 1

9
immðT213Þimm�ðT231Þ − 2

9
immðT132Þimm�ðRÞ − 1

9
immðT213Þimm�ðTÞ þ 1

6
jperðTÞj2

�

þ ζ12 expð−2ξ12Δτ21Þ
�
− 1

6
j detðTÞj2 þ 1

9
immðTÞimm�ðT132Þ þ

2

9
immðTÞimm�ðT213Þ

þ 2

9
imm�ðT132ÞimmðT231Þ þ

1

9
imm�ðT213ÞimmðT231Þ þ

2

9
immðT132Þimm�ðT231Þ

þ 1

9
immðT213Þimm�ðT231Þ þ

1

9
immðT132Þimm�ðTÞ þ 2

9
immðT213Þimm�ðTÞ þ 1

6
jperðTÞj2

�

þ ζ23 expð−2ξ23Δτ22Þ
�
− 1

6
j detðTÞj2 þ 1

9
immðTÞimm�ðT132Þ − 1

9
immðTÞimm�ðT213Þ

−
1

9
imm�ðT132ÞimmðT231Þ − 2

9
imm�ðT213ÞimmðT231Þ − 1

9
immðT132Þimm�ðT231Þ

−
2

9
immðT213Þimm�ðT231Þ þ

1

9
immðT132Þimm�ðTÞ − 1

9
immðT213Þimm�ðTÞ þ 1

6
jperðTÞj2

�

þ ζ123 expð−Ia þ iIsÞ
�
1

6
j detðTÞj2 − 1

9
jimmðT132Þj2 − 2

9
imm�ðT132ÞimmðT213Þ

þ 1

9
immðT132Þimm�ðT213Þ − 1

9
jimmðT213Þj2 þ

1

9
immðTÞimm�ðT231Þ − 1

9
jimmðT231Þj2

−
1

9
jimmðTÞj2 − 2

9
immðT231Þimm�ðTÞ þ 1

6
jperðTÞj2

�

þ ζ123 expð−Ia − iIsÞ
�
1

6
j detðTÞj2 − 1

9
jimmðT132Þj2 − 2

9
immðT132Þimm�ðT213Þ

þ 1

9
imm�ðT132ÞimmðT213Þ − 1

9
jimmðT213Þj2 þ

1

9
imm�ðTÞimmðT231Þ − 1

9
jimmðT231Þj2

−
1

9
jimmðTÞj2 − 2

9
imm�ðT231ÞimmðTÞ þ 1

6
jperðTÞj2

�
; ðA12Þ

with

ζ123 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ12ζ23ζ13

p
;

Ia ≡ IaðΔτ1;Δτ2Þ ¼ −ðΔτ1Þ2 ξ12
2

− ðΔτ1 − Δτ2Þ2
ξ13
2

− ðΔτ2Þ2
ξ23
2

;

Is ≡ IsðΔτ1;Δτ2Þ ¼ Δτ1ν12 − ðΔτ1 − Δτ2Þν13 − Δτ2ν23;

ζij ¼
2σiσj
σ2i þ σ2j

exp

�
− ðωc;i − ωc;jÞ2

2ðσ2i þ σ2jÞ
�
; ðA13Þ
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ξij ¼
2σ2i σ

2
j

σ2i þ σ2j
; νij ¼

ωc;iσ
2
j þ ωc;jσ

2
i

σ2i þ σ2j
: ðA14Þ

The subscripts denote the mode labels for the submatrix T. Tijk is the matrix T with the rows permuted according to 1 → i,
2 → j, and 3 → k.
For a more elegant expression, Eq. (A12) can be simplified introducting six matrices, 1, ρ12, ρ13, ρ23, ρ123, and ρ132:

P111ðΔτ1;Δτ2Þ ¼ðP̂ Ŝ v3Þ†½1þ ρ12ζ12e−ξ12Δτ
2
1 þ ρ23ζ23e−ξ23Δτ

2
2 þ ρ13ζ13e−ξ13ðΔτ1−Δτ2Þ

2

þ ζ123ðρ132eξ�123ðΔτ1;Δτ2Þ þ ρ123eξ123ðΔτ1;Δτ2ÞÞ�ðP̂ Ŝ v3Þ ðA15Þ

¼ v†3½R̂ð3ÞðΔτ1;Δτ2Þ�v3; ðA16Þ
where

ξ123ðΔτ1;Δτ2Þ ¼ Ia þ iIs: ðA17Þ

The vector P̂ Ŝ v3 contains all the immanants and the determinant and permanent of T:

P̂ Ŝ v3 ≡

0
BBBBBBBBBB@

1ffiffi
6

p perðTÞ
1ffiffi
6

p detðTÞ
1

2
ffiffi
3

p immðTÞ þ 1

2
ffiffi
3

p immðT213Þ
1
6
immðTÞ − 1

3
immðT132Þ − 1

6
immðT213Þ þ 1

3
immðT312Þ

1
6
immðTÞ þ 1

3
immðT132Þ þ 1

6
immðT213Þ þ 1

3
immðT312Þ

− 1

2
ffiffi
3

p immðTÞ þ 1

2
ffiffi
3

p immðT213Þ

1
CCCCCCCCCCA
; ðA18Þ

with

v3 ¼

0
BBBBBBBBB@

perðTÞ
immðTÞ

immðT132Þ
immðT213Þ
immðT312Þ
detðTÞ

1
CCCCCCCCCA
;

P̂ ¼

0
BBBBBBBBBBBB@

1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p

1ffiffi
6

p − 1ffiffi
6

p − 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p − 1ffiffi
6

p

1ffiffi
3

p − 1

2
ffiffi
3

p 1ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p

0 − 1
2

0 − 1
2

1
2

1
2

0 1
2

0 − 1
2

1
2

− 1
2

− 1ffiffi
3

p − 1

2
ffiffi
3

p 1ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p − 1

2
ffiffi
3

p

1
CCCCCCCCCCCCA

; Ŝ ¼

0
BBBBBBBBBBBB@

1
6

1
3

0 0 0 1
6

1
6

0 1
3

0 0 − 1
6

1
6

0 0 1
3

0 − 1
6

1
6

− 1
3

0 0 − 1
3

1
6

1
6

0 0 0 1
3

1
6

1
6

0 − 1
3

− 1
3

0 − 1
6

1
CCCCCCCCCCCCA

: ðA19Þ

Here, P̂ is a basis transformation and Ŝ is a matrix mapping matrix elements to matrix functions. The six matrices ρ are, in
fact, permutation matrices reduced to the block-diagonal form of Eq. (10).
Equation (A15) describes the same features as Eq. (A12) but highlights the permutational options for three photons.

It is given in a maximally decoupled basis, which allows for a compact notation. The terms originating from the
overlap integrals (ζ terms and ξ terms) contain all the information on the physical properties of the interfering photons. The
effect of the permutation symmetry of the photons is included in the permutation matrices ρ. Equation (A16) features an
even further compressed notation and allows for an elegant interpretation. Whereas the block-diagonal 6 × 6 rate matrix
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R̂ð3ÞðΔτ1;Δτ2Þ contains all the information on the permuta-
tional symmetry and nonclassical interference itself, the
basis vector v3 contains the information on the interfer-
ometer. As alluded in Sec. IV two entries of this rate matrix

are sufficient for an interpretation. Fper ¼ R̂ð3Þ
11 ðΔτ1;Δτ2Þ

quantifies the fraction of the output probability distribution

proportional to the permanent and Fdet ¼ R̂ð3Þ
66 ðΔτ1;Δτ2Þ to

the determinant of the submatrix T. The contribution
proportional to immanants can also be explicitly calculated.
When interested in only their overall contribution, this is
given as Fimm ¼ 1 − Fper − Fdet. In the extremal case when
all the photons are indistinguishable, i.e.,

ωc;1 ¼ ωc;2 ¼ ωc;3 ¼ ωc; σ1 ¼ σ2 ¼ σ3 ¼ σ;

Δτ1 ¼ Δτ2 ¼ 0; ðA20Þ

we have ζij ¼ 1, ξij ¼ σ2, and νij ¼ ω, so the output
probability reduces from a superposition of 60 terms to just
P111 → jperðTÞj2. The rate matrix for the case of com-
pletely indistinguishable photons, R̂ð3ÞðΔτ1 ¼ 0;Δτ2 ¼ 0Þ,
describing the perfect quantum interference, and the rate
matrix for the case of completely distinguishable photons,
R̂ð3ÞðΔτ1 ¼ ∞;Δτ2 ¼ −∞Þ, describing the classical case,
are given as

R̂ð3ÞðΔτ1 ¼ 0;Δτ2 ¼ 0Þ ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
;

R̂ð3ÞðΔτ1 ¼ ∞;Δτ2 ¼ −∞Þ ¼

0
BBBBBBBBB@

1
6

0 0 0 0 0

0 2
9

0 0 1
9

0

0 0 2
9

1
9

0 0

0 0 1
9

2
9

0 0

0 1
9

0 0 2
9

0

0 0 0 0 0 1
6

1
CCCCCCCCCA
:

3. Matrix reconstruction

The fabrication of integrated photonic networks using a
femtosecond-laser direct-writing technology works with
high precision and high stability. Discrete unitary operators
acting on modes can be realized solely from beam splitters
and phase shifters [32]. These networks are arranged like
cascaded Mach-Zehnder interferometers, shown in Fig. 7.
Notably though, even advanced writing precision can
introduce small deviations from the initially targeted values
of individual elements. In our case this writing precision is

limited to around 50 nm over the whole length of the
waveguide (in this experiment, 10 cm). In a cascaded
interferometric arrangement small deviations of individual
elements may add up to a noticeable deviation in the overall
transformation. The splitting ratio of individual directional
couplers is set by their mode separation and coupling
length. Both characteristic variables are 3 orders of mag-
nitude bigger than the positioning precision and therefore
unaffected by it. Unfortunately, small length fluctuations
due to the positioning precision can introduce unintended
phase shifts. In the worst case, i.e., a phase shifter spanning
the whole length of a waveguide, the resultant phase shifts
can even reach π=8. The layout used for the interferometric
networks reported here (see Fig. 7) circumvents this worst
case. Even if the unintended phase shifts are decreased by a
factor of 3 at least, their influence needs to be evaluated and
the actually implemented unitary needs to be reconstructed.
The characterization procedure we use builds on the one
introduced in Refs. [33,34]. Two-photon states from a
down-conversion source are injected into different modes
of the optical network to be characterized. This in situ
method allows for a characterization with states having the
same physical properties, e.g., frequency and spectral
shape, as used later in the experiment.

a. Estimating the visibilities of submatrices

We assume the optical interferometer can be described
by a 5 × 5 unitary matrix and we reconstruct its

FIG. 7. Integrated photonic network. Schematic drawing of the
optical network. The circuit consists of eight directional couplers
(η1;…; η8), 11 phase shifters (ϕ1;…;ϕ11), five input modes
ð1;… ; 5Þ, as well as five output modes (10;…; 50). To allow
coupling to the waveguide with standard fiber arrays, the input
and output modes are separated 127 μm and the total length of the
chip is 10 cm.
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transformation via visibilities measured by injecting two
photons into any combination of two of its five inputs. The
visibility for two photons entering input modes i; j and
exiting in the output modes k; l can be calculated from the
2 × 2 submatrix Ui;j;k;l. For five input and output modes
this results in ð5

2
Þ × ð5

2
Þ ¼ 100 possibilities. Owing to the

structure of the interferometer (see Fig. 7), a photon
injected into port 5 cannot exit from output 10. This leads
to a visibility of zero for the four input pairs ij ¼
15; 25; 35; 45 and the output pairs kl ¼ 15; 25; 35; 45.
These visibilities are omitted from this reconstruction
algorithm, so the unitary transformation is reconstructed
from 84 nonzero visibilities.
Our interferometric network consists of eight beam

splitters and 11 phase shifters. Each beam splitter imple-
ments a SU(2) transformation with matrix representation:

�
cos β

2
i sin β

2

i sin β
2

cos β
2

�
; ðA21Þ

where β is the Euler angle associated with the transmittivity
η via the relationship η ¼ cos2ðβ=2Þ. Note that in Eq. (A21)
the beam splitter also implements a relative phase shift of π
between the first and second mode.
The 11 phase shifters produce additional phases in their

respective modes. Each phase shifter has a matrix repre-
sentation of

�
eiα1 0

0 eiα2

�
; ðA22Þ

with αi the phase shift in mode i.
The spectral shape of the photons is measured with a

single-photon spectrometer (Ocean Optics QE6500) and to a
good approximation is of Gaussian shape. Such Gaussians
are defined by only two parameters, namely, their central
frequency and the variance, which for the ith photon of the
input pair is given by Eq. (A3), and expressed here as

jϕiðωÞj2 ¼
1ffiffiffiffiffiffi
2π

p
σi
exp

�
− ðω − ωc;iÞ2

2σ2i

�
; i ¼ 1; 2:

ðA23Þ
Assuming both photons exhibit identical spectral function,
i.e., jϕ1ðωÞj2 ¼ jϕ2ðωÞj2, and the detectors are modeled by
the detection positive-operator valued measure (POVM)with
two elements fΠ0;Π1g satisfying completeness,

P
iΠi ¼ I,

Π1 ¼
Z

dωa†ðωÞj0ih0jaðωÞ; Π0 ¼ I − Π1; ðA24Þ

then the visibility is

V ¼ − h1h�2 þ h�1h2
jh1j2 þ jh2j2

; ðA25Þ

with

h1 ¼ U11
i;j;k;lU

22
i;j;k;l; h2 ¼ U12

i;j;k;lU
21
i;j;k;l; ðA26Þ

andUa;b
i;j;k;l denotes the element in the ath row and bth column

of the matrix Ui;j;k;l. In an experiment the two photons
will always have slightly different spectral functions whose
mismatch needs to be accounted for. The central wavelengths
and spectral bandwidths of the photons used in this charac-
terizationmeasurement are λc;1¼ 789.05 nm,Δλ1 ¼ 2.9 nm
and λc;2 ¼ 788.60 nm, Δλ2 ¼ 2.9 nm, respectively. The
coincidence counts Nc as a function of time delay t and
spectral mode mismatch are

NcðtÞ ¼ ð1þ T � tÞ
�
Y0 þ A

2σ1σ2
σ21 þ σ22

× exp

�
− ðωc;1 − ωc;2Þ2 þ 4σ21σ

2
2ðt − tcÞ2

2ðσ21 þ σ22Þ
�

− ðHO1 þHO2 − dÞ
�
; ðA27Þ

where Y0, A, tc, and T are parameters to be fitted to the
experimental data. The experimental data for a given input-
output combination i; j; k; l is typically recorded for 30
increments with a step width of 66 fs and integrated over
800 s each step. The coincidences are readout by a field-
programmable gate array logic. As individual delays are
set by translating a fiber coupler with a motorized screw
(Newport LTA-HL), there can be a small drift in coupling
efficiency over thewhole delay range of 2000 fs.Without this
drift, the background of the visibility would be a horizontal
straight line. For drifts smaller than 5% of the two-photon
flux, the drift is in good approximation linear and can be
modeled with an additional parameter T. The positioning
precision of the delay lines is limited to approximately
�5 μm, which is within 2.5% of the coherence time of
the interfering photons. When the two-photon input state is
generated via down-conversion pumped by a pulsed laser
system, higher-order emission can lead to unwanted con-
tribution to the input state. The first higher order, which is a
fourfold emission, causes a small contribution of two photons
in each input mode during the characterization of a 2 × 2
submatrix. This can add a constant background to the twofold
coincidences in the following scenario: two photons in one
input mode are lost and the two photons in the other input
mode leave the network in different output ports.Wemeasure
such contributions by blocking one of the two input modes
and recording the two-photon coincidences at the output.
These signals are labeled HO1 and HO2, respectively, and
subtracted from the data. The background coincidence rate d
may be interpreted as a contribution to Nc stemming from
dark counts due to electrical noise and background light. This
rate d is also present in HO1 and HO2. Therefore, it has to be
added to Eq. (A27) to account for all unwanted coincidences
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only once. The error for the raw data is verified to be
Poissonian. For the data processing, the error of the higher-
order term ðHO1 þ HO2 − dÞ and the abscissa error caused
by the limited alignment precision of the delay lines need to
be taken into account additionally. These errors provide
weighting in the minimization algorithm and influence the
standard errors of the fitted parameters. The visibility,

V ¼ 1 − Y0 þ A
Y0

; ðA28Þ

is finally calculated from the parameters Y0 and A, whereas
thewidth of the dip or peak is fixed by the spectral function of
the two photons. Only 84 out of 100 visibilities are nonzero,

and their value fVðexptÞ
i ; i ¼ 1;…; 84g and standard

deviation fσi; i ¼ 1;…; 84g are extracted via the procedure
outlined above. The resultant data fits with theory exhibit
χ2red ¼ 1.74 [35]. An example for one of the 84 data sets is
shown in Fig. 8.

b. Parameter estimation and reconstruction
of the unitary matrix

A unitary transformation of a linear optical network
can be reconstructed from single-photon transmission

probabilities and two-photon interference visibilities
[34]. A technique using coherent states [36] follows a
similar approach. Both techniques reconstruct the unitary
description in a dephased representation where the single-
photon or single-input coherent state data are used to
estimate the real parts of the matrix entries. The imaginary
parts of the matrix–entries are reconstructed from the two-
photon interference visibilities or directly from the relative
phase shifts. When the layout and initially targeted param-
eters of the building blocks (see Fig. 7) of the interfero-
metric network are known, their actual parameters can be
fitted alternatively. Our technique uses an overcomplete
set of visibilities, and the parameters of the interferometer
that give an optimal fit to the experimentally measured
visibilities are obtained using a least-squares optimization
weighted with the standard errors of the experimental
visibilities (see Appendix A 3 a for details). Eight of the
19 parameters are transmittivities, β1; β2;…β8, and 11 are
phases, ϕ1;ϕ2;…ϕ11. To find the best-fit set of parameters,
the data are processed with a Matlab program that uses
fmincon to minimize the function Vopt,

Vopt ¼
X84
i¼1

ðVðexptÞ
i − VðthÞ

i Þ2
σ2iΓ

; ðA29Þ

FIG. 8. Example for one data set used for the reconstruction of U5. The best fit of Eq. (A27) to the data set is shown in blue. Here, the
visibility is calculated from the best fit parameters Y0 and A. The reduced χ2 resulting from the fit shown in blue is χ2blue ¼ 2.02.
Fluctuations in the count rate for values of jΔτj > 500 fs drive the reduced χ2 away from 1. These fluctuations can be interpreted as the
random noise background in the lab and the increased reduced χ2 reflects that. However, the precision of the fitted parameters Y0 and A
and ultimately the extracted visibility V is only marginally affected by these fluctuations. The 5 × 5 unitary description of the
interferometric network is reconstructed from 84 of these visibilities. The curve in green, NðthÞ

c ðtÞ [see Eq. (A33)] is calculated from four
matrix entries of the reconstructed unitary and results in an overlap with the data of χ2green ¼ 2.70. The agreement of these two curves and
corresponding reduced χ2’s is a qualitative measure for the precision of the reconstruction.
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where VðthÞ
i is the theoretical value of the visibility calcu-

lated from our special unitary model of the interferometer
using Eq. (A25) for the ith data set, and Γ is a constant
value equal to ðnumber of data sets in visibilities−
number of parameters− 1Þ ¼ 2522− 19− 188− 1¼ 2314.
Equation (A29) looks similar to a reduced χ2 but has to be

interpreted differently. A value close to 0 is desirable and
indicates good agreement between experimentally extracted
and theoretically predicted visibilities. In our case, the result
is Vopt ¼ 0.351.
The 5 × 5 reconstructed matrix U5 using the procedure

outlined above is

U5 ¼

0
BBBBBB@

0.0320− 0.3370i 0.07239þ 0.8203i −0.2780 − 0.1060i 0.1228 − 0.3220i 0

0.0114þ 0.2751i −0.3863þ 0.1860i −0.1353þ 0.2073i −0.7842 − 0.1502i 0.0124 − 0.2036i

−0.7757 − 0.2328i −0.2937þ 0.0018i −0.2677 − 0.0162i 0.0267þ 0.3517i −0.2476− 0.0151i

0.1444− 0.2611i −0.1518 − 0.0840i −0.1392þ 0.0839i −0.1327 − 0.0092i 0.0203þ 0.8449i

0.2225þ 0.1231i 0.0715 − 0.1293i −0.7929 − 0.0268i 0.0871þ 0.3067i 0.4123 − 0.1121i

1
CCCCCCA
:

ðA30Þ

4. Quality of the reconstructed description

Using this matrix, the probability of coincidence counts

PðthÞ
11 can be predicted for any two-photon inputs and

outputs. For the inputs i and j, i < j, and outputs k and
l, k < l, this reads as

PðthÞ
11 ðt − tcÞ ¼ jUki

5 U
jl
5 j2 þ jUli

5U
kj
5 j2

þ ðUli
5U

kj
5 U

ki
5
�Ujl

5
�

þ Uli
5
�Ukj

5
�Uki

5 U
jl
5 Þfðt − tcÞ; ðA31Þ

where

fðtÞ≡ ½2σ1σ2=ðσ21 þ σ22Þ�

× exp

�
− ðωc;1 − ωc;2Þ2 þ 4σ21σ

2
2t

2

2ðσ21 þ σ22Þ
�
; ðA32Þ

and Uab
5 is the element in the ath row and bth column

of U5. The actual coincidence count is then

NðthÞ
c ðtÞ ¼ N0ð1þ TÞPðthÞ

11 ðt − tcÞ; ðA33Þ

where N0, tc, and T are parameters used to find the best fit
to the experimental data. The exact χ2red is calculated using

χ2red ¼
Xm
i¼1

ðNðexptÞ
c;i − NðthÞ

c;i Þ2
νϵ2i

; ðA34Þ

where m ¼ 3030, ν ¼ m − 20− 100 − 1 ¼ 2909, ϵi is the

error for the corresponding data point, and NðexptÞ
c;i denotes

the experimental data corrected for higher-order emissions.
The sum is taken over the data set and the index labels the
data. The obtained χ2red between the data and the predicted
coincidence counts using U5 is

χ2red ¼ 2.086: ðA35Þ

This value should be compared to reduced χ2expt ¼ 1.74
obtained by fitting the primary data to extract the 84
visibilities in the beginning (see Appendix A 3 a). The
difference between those two reduced χ2’s can be attributed

FIG. 9. State generation. A pump beam is focused into a 2-mm
β-BaB2O2 crystal cut for noncollinear, degenerate, type-II down-
conversion. The generated state is emitted into the spatial modes
a and b. A compensation scheme consisting of half-wave
plates and 1-mm-thick BBO crystals is applied for countering
temporal and spatial walk-off. Narrow band interference filters
(λFWHM ¼ 3 nm) are applied to increase the temporal coherence
of the photons and render them close to spectral indistinguish-
ability. The modes a and b are subsequently split by polarizing
beam splitter cubes and two half-wave plates in their reflected
ports are set to 45° to ensure the same polarization in all four
output modes (a00, a0, b0, and b00). With this scheme, three
indistinguishable photons in modes a0, b0, and b00 each can be
heralded from a fourfold emission by a successful trigger event in
mode a00.
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to accuracy of the reconstructed unitary matrix U5. While
fluctuations in the count rate for values of jΔτj > 500 fs
drive both reduced χ2 away from 1, the difference between
the two reduced χ2 is relatively small (≈0.35). An example
for one of the 100 data sets is shown in Fig. 8.

5. State generation

We use an 80-MHz Ti:sapphire oscillator emitting 150-fs
pulses at a wavelength of 789 nm, which get frequency
doubled via a LiB3O5. The up-converted beam is focused
into a 2-mm-thick β-BaB2O2 crystal cut for degenerate
noncollinear type-II spontaneous parametric down-
conversion. To achieve near-spectral indistinguishability
and enhance temporal coherence of the down-converted
wave packets, the photons are filtered by λFWHM ¼ 3 nm
interference filters. The source is aligned to emit the
maximally entangled state

jϕþi ¼ 1ffiffiffi
2

p ðjHiajHib þ jViajVibÞ; ðA36Þ

when pumped with low pump power (200 mW cw
equivalent). H and V denote horizontal and vertical
polarization and a and b are the two spatial emission
modes. When pumped with higher pump powers (700 mW
cw equivalent), noticeable higher-order emission occurs:

jψia;b ¼
1ffiffiffi
3

p ðjHHiajHHibþjHViajHVibþjVViajVVibÞ:

ðA37Þ

This state is guided to two PBS cubes. A detection event
in the trigger mode a00 heralds the generation of either the
state jVia0 jVib0 jHib00 or jHHib00 (see Fig. 9). Only in the
first case are the three modes a0, b0, and b00 occupied with
one single photon, whereas in the latter case mode b00 is
occupied with two photons and mode b0 with vacuum.
Postselection on a fourfold coincidence between modes a00,
a0, b0, and b00 allows for the heralding of the desired input
state where only one photon enters each input mode.
The half-wave plates in mode a0 and b0 are set to 45° to
render them indistinguishable in polarization from the other
photons. This heralding scheme holds independently of
any transformation for the photons in modes a0, b0, and b00
as long as it acts on spatial modes, e.g., consisting of
beam splitters and phase shifters only.

6. Analysis of the threefold coincidence data

Three photons are inserted into input modes 1, 2, and 4
of the interferometric network. The spectral characteristics
of these photons are measured using a single-photon
spectrometer (Ocean Optics QE6500) and are in good
approximation of Gaussian shape. Note that these spectral
data differ slightly compared to the characterization mea-
surements (see Appendix A 3 a).

λc ΔλFWHM

In1 789.35 nm 2.85 nm
In2 789.52 nm 2.79 nm
In4 789.41 nm 2.72 nm

TABLE III. Data for the coincidence landscapes of Fig. 3. Three photons are injected into input ports 1, 2, and 4 of the interferometric
network. They are recorded as a fourfold coincidence measurement between output modes 1, 3, and 4 and the trigger mode, labeled “Out
134,” and output modes 1, 3, and 4 and the trigger mode, labeled “Out 345.” The theoretical prediction, “theoretical,” for the output
probability to record a certain event for a pair of temporal delays Δτ1 and Δτ2 is calculated using Eq. (A16). The experimentally
acquired count rates, “experimental,” are normalized to unit vectors and fitted to the theoretical data resulting in a goodness of fit of
χ2red ¼ 1.38 and χ2red ¼ 1.10, respectively. The experimental errors are standard deviations over 19 independent measurements.

Δτ1 Δτ2 Theoretical Experimental χ2red Count rate

Out 134

0 fs 130 fs 3.41% 3.17%� 0.26%
0 fs −870 fs 1.89% 2.18%� 0.19%

−300 fs −170 fs 3.13% 2.99%� 0.25% 1.38 ≈10 mHz
−1000 fs −870 fs 2.95% 2.96%� 0.26%
−1000 fs 130 fs 2.20% 2.51%� 0.21%
−1000 fs 1130 fs 2.73% 2.72%� 0.31%

Out 345

0 fs 130 fs 14.19% 14.73%� 0.93%
0 fs −870 fs 23.69% 24.01%� 0.84%

−300 fs −170 fs 17.67% 19.10%� 0.98% 1.10 ≈80 mHz
−1000 fs −870 fs 25.09% 24.01%� 0.85%
−1000 fs 130 fs 21.14% 21.32%� 0.80%
−1000 fs 1130 fs 31.40% 30.85%� 1.40%
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These spectral data allow us to express the mode-overlap integrals as a function of the time delays Δτ1 and Δτ2 between
the first and second photon and the second and third photon, respectively. The theoretical prediction for the output
probability in any of the ten threefold output ports is then calculated using Eq. (A15). Consequently, each 3 × 3 submatrix R
is constituted by matrix elements selected by the input and output ports. The output probability [see Eq. (A15)] of any
landscape contains a constant term and four terms proportional to different mode-overlap functions. By sampling six points
of pairwise temporal delay of Δτ1 and Δτ2, P1–P6 in the table below, contributions of each of these terms can be assessed.
These six points are shown here.

TABLE IV. Data for the normalized output probability distributions of Fig. 4. The column “Figure” specifies the temporal delays of
each part of Fig. 4, whereas the column “Tijk” refers to the scattering submatrix of Eq. (A12). The experimentally acquired count rates
are normalized to unit vectors, then fitted to the theoretical output probability and given under column “Experiment in %.” The errors are
standard deviations over 19 independent measurements. The last column, “Theory in %,” shows the theoretical output probability
according to Eq. (A16). The contribution of the permanent, the immanant, and the determinant to this theoretical value is given in the
columns “per in %,” … imm in %,” and “det in %,” respectively.

Figure Tijk Experiment in % per in % imm in % det in % Theory in %

4(a) 245 1.46� 0.39 1.72 0.13 0.00 1.86
235 10.02� 0.83 11.32 0.44 0.00 11.76
123 46.8� 3.00 33.38 11.97 0.00 45.36
345 0.47� 0.20 0.03 0.16 0.00 0.19

Δτ1 ¼ 0 fs 234 7.24� 0.80 7.08 0.77 0.00 7.85
134 6.69� 0.71 6.30 1.54 0.00 7.85

Δτ2 ¼ 130 fs 125 7.96� 0.89 5.21 2.87 0.00 8.08
145 1.69� 0.40 1.41 0.13 0.00 1.55
135 8.01� 0.77 3.98 1.10 0.00 5.08
124 9.71� 0.94 8.95 1.50 0.00 10.45

4(b) 245 1.35� 0.24 0.93 0.59 0.01 1.53
235 7.93� 0.68 6.11 2.45 0.11 8.67
123 50.86� 2.60 18.02 29.62 1.19 48.82
345 0.78� 0.16 0.02 0.64 0.01 0.66

Δτ1 ¼ −300 fs 234 6.00� 0.41 3.82 3.04 0.03 6.89
134 5.12� 0.58 3.40 1.21 0.01 4.61

Δτ2 ¼ −170 fs 125 8.07� 0.74 2.81 3.69 0.03 6.53
145 1.86� 0.26 0.76 1.20 0.02 1.98
135 8.64� 0.68 2.15 8.86 0.14 11.15
124 9.39� 0.59 4.83 4.16 0.16 9.15

4(c) 245 1.17� 0.26 0.37 0.77 0.05 1.19
235 6.59� 0.58 2.46 3.35 0.59 6.40
123 53.64� 1.90 7.26 40.72 6.54 54.52
345 0.92� 0.20 0.01 0.96 0.03 1.00

Δτ1 ¼ −1000 fs 234 5.29� 0.43 1.54 3.63 0.15 5.32
134 4.06� 0.40 1.37 2.43 0.04 3.84

Δτ2 ¼ −870 fs 125 8.19� 0.64 1.13 6.26 0.19 7.58
145 1.57� 0.22 0.31 1.24 0.12 1.67
135 9.91� 0.74 0.87 8.03 0.78 9.68
124 8.67� 1.00 1.95 5.97 0.89 8.80

4(d) 245 0.92� 0.23 0.19 0.51 0.17 0.86
235 5.12� 0.58 1.21 1.91 1.97 5.09
123 58.26� 2.70 3.58 33.36 21.69 58.63
345 0.60� 0.09 0.00 0.56 0.11 0.68

Δτ1 ¼ −1000 fs 234 4.17� 0.39 0.76 2.85 0.50 4.11
134 4.03� 0.51 0.68 2.79 0.12 3.59

Δτ2 ¼ 1130 fs 125 7.38� 0.62 0.56 6.00 0.64 7.19
145 1.32� 0.28 0.15 0.91 0.39 1.45
135 10.00� 0.38 0.43 7.15 2.57 10.15
124 8.18� 0.71 0.96 4.33 2.95 8.25
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Δτ1 Δτ2
P1 0 fs 130 fs
P2 0 fs −870 fs
P3 −300 fs −170 fs
P4 −1000 fs −870 fs
P5 −1000 fs 130 fs
P6 −1000 fs 1130 fs

An offset of Δτoff ¼ 130 fs is introduced in the temporal
delay mode Δτ2; other than that the delays are set to
combinations of 0, −300, and �1000 fs. The precision of
the temporal alignment is estimated to be �16 fs. In one
measurement run the points P1–P6 are recorded consecu-
tively for 2 h each. To account for effects of drift, this order
is reversed in the next measurement run; therefore, the
points are recorded in the order P6–P1. The fourfold count
rates range from 1 to 100 mHz, dependent on the output
combination. In between each measurement run the setup is
realigned to optimize for maximal count rates. In order to
obtain sufficient statistics, the whole data acquisition is
repeated over 19 measurement runs for a total of 228 h.
As Poissonian error modeling results in too optimistic

error bars in the case of long data acquisition due to
multiple sources of error, we adapt the error modeling. The
19 measurements are independent runs; therefore, their
mean and standard deviation of the mean provide more
useful information. Each individual measurement run is
represented as a six-dimensional vector, with the ith entry
of the vector containing the fourfold counts of the Pith
delay point integrated over 2 h. These vectors can then be
normalized to unit vectors thereby obtaining relative output
probabilities. The mean and the standard deviation of the
mean can now be calculated for each of the six delay points.
Ultimately, the overlap with the theoretical prediction is
obtained by a least-squared minimization weighted with the
standard deviations. Here, a linear scaling factor is intro-
duced relating the relative experimental probabilities to the
absolute theoretical ones (see Table III). The goodness of fit
is calculated using the reduced χ2. The number of degrees
of freedom in this case is ν ¼ 6–2 ¼ 4.
The experimental data for the four different scenarios of

BosonSampling affected by distinguishability, shown in
Fig. 4, are recorded using the same method as above.
Table IV shows the experimental data and theoretical
prediction for Figs. 4(a)–4(d).
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